近日,中国科学技术大学微电子学院龙世兵教授、孙海定研究员团队在氮化镓(GaN)半导体p-n异质结中实现了独特的光电流极性反转(即双向光电流现象)。相关成果以“Bidirectional photocurrent in p–n heterojunction nanowires”为题于9月23日发表在《自然•电子学》上(Nature Electronics 2021, 4, 645–652)。这是中国科大首次以第一作者单位在电子器件领域知名期刊Nature Electronics上发表研究论文。部分工作在本中心完成。
半导体p-n结具有独特的整流特性,是众多电子元器件的基本构成单元,基于此所构建的传统固态光电探测器(solid-state photodetector)可将光信号捕获并转换为输出电信号,被广泛应用于成像、传感、探测等领域。然而,该类器件受限于传统p-n结的工作机理,其工作特征须遵照以下原则:(1)入射光子能量大于半导体的带隙;(2)在固定偏压下,产生的光电流朝固定方向单向流动(单向光电流),这大大限制了其在特殊应用场景(例如高分辨多色成像、生物光电检测、便携式小型光谱仪、多通道光通信和光逻辑运算等)中的应用。
图1.器件工作原理示意图
基于前期的工作积累,研究人员从GaN基半导体p-n异质结能带结构设计,MBE外延工艺探索及纳米线形貌调控出发,结合DFT第一性原理理论计算优化及半导体表面金属铂(Pt)纳米颗粒定向修饰,成功构建了基于p-AlGaN/n-GaN异质p-n结的光谱可分辨型光电探测器[Nature Electronics 2021, 4, 645–652]。图1为器件的工作原理示意图。在固定偏压下,该器件在两种不同波长光的照射下展现出独特的光电流极性反转现象:在254nm光照下光电流为负电流,而在365nm光照下光电流为正电流。具体来说,为实现光电流极性反转,特殊设计的顶部p-AlGaN被用于与底部n-GaN共同吸收波长254 nm的光(图1b)。在254nm光照射下,p-AlGaN和n-GaN中同时产生电子-空穴对(图1a)。其中,p-AlGaN在电解质溶液中向下的表面能带弯曲有利于其中的光生电子向纳米线表面漂移,驱动质子还原反应,而光生空穴则向p-n结中的空间电荷区域迁移,与n-GaN产生的光生电子隧穿复合。与此同时,n-GaN中的光生空穴流经外电路,表现出负的光电流信号。而当纳米线暴露在365nm光下时,因p-AlGaN不吸收365nm光照,仅有n-GaN吸收365nm光照后产生光生电子-空穴对。而后,由n-GaN在电解质溶液中呈现的向上表面能带弯曲作为驱动力,促使n-GaN中的光生空穴漂移到纳米线/溶液界面并进行水氧化反应。同时,在表面能带弯曲和p-n结内建电场共同作用下,电子向外电路漂移,被记录为正的光电流。更进一步,理论计算证实:通过在半导体p-AlGaN表面修饰贵金属Pt纳米颗粒可以有效改善氢吸附自由能并提高光电化学光探测过程中的光生载流子分离效率。据此,研究人员利用光化学还原法,成功在纳米线p-AlGaN(000-1)晶面定向修饰Pt纳米颗粒(图2b-d)。最终,在固定偏压下,研究人员成功观察到在不同波长光照下GaN基pn结纳米线中的光电流极性反转现象(图2a)。
图2.器件在不同波长光照下的光响应性能(a)及Pt纳米颗粒修饰p-n异质结纳米线形貌表征(b,c,d)
该新型器件架构不仅克服了传统固态p-n结光电探测器的功能限制,通过改变半导体材料本身带隙(如组分调控等手段),还可以实现从深紫外到近红外全光谱响应覆盖,有望为便携式光谱仪、液体环境(如水下,生物体内)光电探测和传感、高分辨率多通道光电传感器/成像设备、光控逻辑电路等未来新学科交叉领域带来新的应用突破。